Personalized TV Recommendation with Mixture Probabilistic Matrix Factorization | Proceedings of the 2015 SIAM International Conference on Data Mining | Society for Industrial and Applied Mathematics
نویسندگان
چکیده
With the rapid development of smart TV industry, a large number of TV programs have been available for meeting various user interests, which consequently raise a great demand of building personalized TV recommender systems. Indeed, a personalized TV recommender system can greatly help users to obtain their preferred programs and assist TV and channel providers to attract more audiences. While different methods have been proposed for TV recommendations, most of them neglect the mixture of watching groups behind an individual TV. In other words, there may be different groups of audiences at different times in front of a TV. For instance, watching groups of a TV may consist of children, wife and husband, husband, wife, etc in many US household. To this end, in this paper, we propose a Mixture Probabilistic Matrix Factorization (mPMF) model to learn the program preferences of televisions, which assumes that the preference of a given television can be regarded as the mixed preference of different watching groups. Specifically, the latent vector of a television is drawn from a mixture of Gaussian and the mixture number is the estimated number of watching groups behind the television. To evaluate the proposed mPMF model, we conduct extensive experiments with many state-of-the-art baseline methods and evaluation metrics on a real-world data set. The experimental results clearly demonstrate the effectiveness of our model.
منابع مشابه
A Spatial-Temporal Probabilistic Matrix Factorization Model for Point-of-Interest Recommendation | Proceedings of the 2016 SIAM International Conference on Data Mining | Society for Industrial and Applied Mathematics
With the rapid development of Location-based Social Network (LBSN) services, a large number of Point-of-Interests (POIs) have been available, which consequently raises a great demand of building personalized POI recommender systems. A personalized POI recommender system can significantly help users to find their preferred POIs and assist POI owners to attract more customers. However, due to the...
متن کاملLatent Factor Transition for Dynamic Collaborative Filtering | Proceedings of the 2014 SIAM International Conference on Data Mining | Society for Industrial and Applied Mathematics
User preferences change over time and capturing such changes is essential for developing accurate recommender systems. Despite its importance, only a few works in collaborative filtering have addressed this issue. In this paper, we consider evolving preferences and we model user dynamics by introducing and learning a transition matrix for each user’s latent vectors between consecutive time wind...
متن کاملMultimodal Network Alignment | Proceedings of the 2017 SIAM International Conference on Data Mining | Society for Industrial and Applied Mathematics
A multimodal network encodes relationships between the same set of nodes in multiple settings, and network alignment is a powerful tool for transferring information and insight between a pair of networks. We propose a method for multimodal network alignment that computes a matrix which indicates the alignment, but produces the result as a lowrank factorization directly. We then propose new meth...
متن کاملPersonalized TV Recommendation with Mixture Probabilistic Matrix Factorization
With the rapid development of smart TV industry, a large number of TV programs have been available for meeting various user interests, which consequently raise a great demand of building personalized TV recommender systems. Indeed, a personalized TV recommender system can greatly help users to obtain their preferred programs and assist TV and channel providers to attract more audiences. While d...
متن کاملA Projected Alternating Least square Approach for Computation of Nonnegative Matrix Factorization
Nonnegative matrix factorization (NMF) is a common method in data mining that have been used in different applications as a dimension reduction, classification or clustering method. Methods in alternating least square (ALS) approach usually used to solve this non-convex minimization problem. At each step of ALS algorithms two convex least square problems should be solved, which causes high com...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015